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Abstract

A mixed supersymmetric–algebraic approach to the construction of the
minimum uncertainty coherent states of anharmonic oscillators is presented. It
permits generating not only the well-known coherent states of the harmonic and
Morse oscillators but also the so far unknown coherent states of the Wei Hua and
generalized Morse and Kratzer–Fues oscillators. The method can be applied to
generate superpotentials indispensable for deriving the Schrödinger equation in
the supersymmetric form amenable to direct solution in the SUSYQM scheme.

PACS numbers: 03.65.Fd, 04.65.+e

1. Introduction

The coherent states introduced by Schrödinger in 1926 [1] make a very useful tool for the
investigation of various problems in quantum optics [2], in particular the interactions of matter
with coherent radiation [3], for example the resonant interactions of the laser beam with
molecules producing the coherent effects such as self-induced transparency, soliton formation
[4], excitation of a coherent superposition of states [5] and periodic alternations of the refractive
index in the molecular systems [5, 6]. In the latter case, the variation of the refractive index
may appear due to the interaction of the coherent radiation with the coherent rotational [7]
and pure vibrational [8] states of the molecules. Studies in this area require construction of
the coherent states for anharmonic oscillators. Such states are defined in a similar manner
to the ordinary coherent states of the harmonic oscillator [9]: (i) they are eigenstates of
the annihilation operator, (ii) they minimize the generalized position–momentum uncertainty
relation and (iii) they arise from the operation of a unitary displacement operator to the ground
state of the oscillator. It should be pointed out that definition (iii) relies on the form of the
displacement operator, which is specific to the harmonic oscillator [10], hence in this case
mainly approximate coherent states can be derived using, for example, Nieto–Simons [11] or
Kais–Levine [12] procedures. The point (ii) defines the so-called intelligent coherent states
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[13]; they not only minimize the Heisenberg uncertainty relation but also maintain this relation
in time due to its temporal stability. The coherent states according to definition (i) are often
called Barut–Girardello states [14].

Coherent states of anharmonic oscillators have been constructed using several alternative
approaches. In the method proposed by Nieto and Simmons [11], the position and momentum
operators are chosen in such a way that the resultant Hamiltonian resembles that for a harmonic
oscillator. The coherent states are then determined on condition that they minimize the
generalized uncertainty relation in the new variables. Perelomov [15] has derived the coherent
states using the irreducible representations of a Lie group. This method has been successfully
applied to generate the coherent states of the Morse [16] oscillator [12, 17]. The generalized
coherent states can also be constructed using an algebraic method [10] and supersymmetric
quantum mechanics (SUSYQM) [18], especially in the scheme employing the shape invariance
introduced by Gendenshtein [19] and then developed by other authors [20–24]. Applying the
above formalisms, the coherent states for Morse [10–12, 17, 25], Pöschl–Teller [26], hydrogen
atom [27, 28], Eckart and Rosen–Morse [23], double-well and linear (gravitational) potentials
[29] have been constructed.

In the present study, we introduce the mixed supersymmetric–algebraic method, which
does not refer to the concept of shape invariance [19]. It permits the generation of not only the
coherent states of the harmonic and Morse oscillators but also the so far unknown coherent
states of the Wei Hua [30] and generalized Morse and Kratzer–Fues [31] oscillators.

2. The supersymmetric–algebraic method

The method starts from the vibrational dimensionless Schrödinger equation[
1

2
p̂2 + V (q) − E0

]
|v〉 = �Ev0|v〉, p̂ = −i

d

dq
, (1)

in which �Ev0 = Ev − E0 whereas q = urr denotes a dimensionless spatial variable r, with
a scaling factor ur depending on the explicit form of the potential energy term V (q).

The vital point for the approach proposed is the assumption that the last two terms in the
operator part of equation (1) can be specified in the form of the Riccati equation

V (q) − E0 = 1

2

[
x2(q) +

dx(q)

dq

]
(2)

familiar in SUSYQM [33]. Here, x(q) is the anharmonic coordinate, which satisfies the
commutation relation [x(q), p̂] = i dx(q)/dq. Its form depends on the oscillator type, hence
the explicit expression for x(q) will be determined for a given form of the potential energy
function. In SUSYQM x(q) (with accuracy to sign) is interpreted as a superpotential [33],
which permits the construction of the supersymmetric Schrödinger equation straightforward
to analytical solutions.

Substituting equation (2) into (1), one gets the latter in the factorized form

Â†Â|v〉 = �Ev0|v〉, (3)

in which

Â = 1√
2

[
d

dq
− x(q)

]
, Â† = 1√

2

[
− d

dq
− x(q)

]
, [Â, Â†] = −dx(q)

dq
. (4)

In order to construct the coherent state for the potential V (q), we need a ground-state solution
|0〉 of equation (3), which is an eigenstate of the operator Â. If Â annihilates the ground state

2
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Â|0〉 = 0, then the coherent states |α〉 are the eigenstates of the annihilation operator Â, and
the following relations are fulfilled:

Â|α〉 = α|α〉, 〈α|α∗ = 〈α|Â†, |α〉 = |0〉 exp(
√

2αq). (5)

The ground-state eigenfunction |0〉 appearing in (5) can be calculated by the integration of the
annihilation equation Â|0〉 = 0 yielding

|0〉 = exp

[∫ q

x(q ′) dq ′
]

. (6)

The approach proposed adopts only part of the basic concepts of the SUSYQM as Riccati
equation (2), superpotential x(q) and its connection with the ground-state eigenfunction (6).
However, it does not take into account the partner Hamiltonian Ĥ− = ÂÂ† isospectral with
Ĥ+ = Â†Â, which satisfies the shape-invariant condition [20–24],

Â(a1)Â
†(a1) = Â†(a2)Â(a2) + R(a1), (7)

in which a1, a2 are parameters that specify space-independent properties of the potentials
such as strength, range and diffuseness; a2 is a function of a1 , and the remainder R(a1) is
independent of the q-variable.

3. The minimum uncertainty coherent states

One may prove that the states |α〉 minimize the generalized position–momentum uncertainty
relation [10]

(�x(q))2(�p)2 � 1

4
〈α|g(q)|α〉2,

g(x) = −i [x(q), p̂] = dx(q)

dq
= −[Â, Â†].

(8)

To prove this thesis let us calculate

〈α|x(q)|α〉 = 1√
2
〈α|Â + Â†|α〉 = 1√

2
(α + α∗), (9)

〈α|p̂|α〉 = −i
1√
2
〈α|Â − Â†|α〉 = −i

1√
2
(α − α∗), (10)

2〈α|x(q)2|α〉 = 〈α|ÂÂ + 2Â†Â + Â†Â† − dx(q)

dq
|α〉

=
[
(α + α∗)2 − 〈α|dx(q)

dq
|α〉

]
, (11)

−2〈α|p̂2|α〉 = 〈α|ÂÂ − 2Â†Â + Â†Â† +
dx(q)

dq
|α〉

=
[
(α − α∗)2 + 〈α|dx(q)

dq
|α〉

]
, (12)

in which equation (4) is employed in the form ÂÂ† = Â†Â − dx(q)/dq.
Having calculated (9)–(12), we can pass to evaluate

(�x(q))2 = 〈α|x(q)2|α〉 − 〈α|x(q)|α〉2 = −1

2
〈α|dx(q)

dq
|α〉, (13)

3



J. Phys. A: Math. Theor. 42 (2009) 165301 M Molski

(�p)2 = 〈α|p̂2|α〉 − 〈α|p̂|α〉2 = −1

2
〈α|dx(q)

dq
|α〉, (14)

providing �x(q) = �p and

(�x(q))2(�p)2 = 1

4
〈α|dx(q)

dq
|α〉2. (15)

The calculations performed prove that the states |α〉 minimize the generalized position–
momentum uncertainty relation for the anharmonic coordinate x(q). They are also the
eigenstates of the operator Â, which annihilates the ground state Â|0〉 = 0, hence they
satisfy the two fundamental requirements established for the coherent states of an anharmonic
oscillator.

4. The harmonic oscillator

In order to demonstrate how the method works, let us calculate first the well-known coherent
states of the harmonic oscillator. To this purpose let us assume that

dx(q)

dq
= −1 �⇒ x(q) = −q for x(0) = 0. (16)

Then equation (1) including (2) turns out to be the well-known Schrödinger equation for the
ground state |0〉 = exp(−q2/2) of a harmonic oscillator, whereas the operators Â and Â† take
the well-known form of annihilation and creation operators, which satisfy the commutation
rule [Â, Â†] = −dx(q)/dq = 1. Hence, the coherent states of a harmonic oscillator can be
specified by the general formula (5):

|α〉 = |0〉 exp(
√

2αq) = exp
(− 1

2q2) exp(
√

2αq). (17)

5. The generating function

The results obtained for a harmonic oscillator indicate that crucial for the method proposed is
the explicit form of the term dx(q)/dq, which in the general case can be given as a negative
x-dependent function

dx(q)

dq
= −f (x). (18)

Hence, employing different analytical functions f (x) one may generate a variety of potentials
and associated superpotentials satisfying relation (2). The indispensable for this purpose x(q)

can be calculated from (18) by integration, provided that we known the explicit form of f (x).
Assuming that |x(q)| < 1 one may expand f (x) in a power series

f (x) = c1(x + c0/c1) + c2(x + c0/c1)
2 + · · · , (19)

and then successively apply the first-, second- and higher-order terms in the determination of
coherent states of anharmonic potentials.

6. The Morse oscillator

In the simplest case of the linear expansion

f (x) = c1(x + c0/c1), (20)

4
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equation (18) and the initial condition x(0) = (1 − c0)/c1 provide

x(q) = 1

c1
[exp(−c1q) − c0]. (21)

Introducing (20) into (2) and (6) one gets the Schrödinger equation

1

2

{
− d2

dq2
+

1

c2
1

[
c0 + c2

1

/
2 − exp(−c1q)

]2 − c0 − c2
1

4

}
|0〉 = 0 (22)

and the ground-state solution

|0〉 = exp

[
− 1

c2
1

exp(−c1q)

]
exp [−(c0/c1)q] . (23)

Redefining the constants c0 = s − xe, c1 = √
2xe one may transform equations (22) and (23)

into the form
1

2

{
− d2

dq2
+

1

2xe

[s − exp(−
√

2xeq)]2 − s +
xe

2

}
|0〉 = 0 (24)

|0〉 = exp

[
− 1

2xe

exp(−
√

2xeq)

]
exp

[
− (s − xe)q√

2xe

]
, (25)

describing the generalized quantum Morse oscillator [16] endowed with the potential V (r) =
De[s − exp(−ar)]2 and the ground-state energy E0 = s/2 − xe/4 as the special case of the
general formula

Ev = s

(
v +

1

2

)
− xe

(
v +

1

2

)2

. (26)

For s = 1 the specified above formulae reduce to the well-known equations derived by Cooper
[10], in which xe = h̄ωe/(4De) denotes the anharmonicity constant, ωe = a

√
2De/m is the

vibrational frequency defined by the reduced mass m of the system, with the dissociation
energy De and the range parameter a appearing in the Morse potential.

Equations (20) and (4) produce the generalized Morse annihilation and creation operators

Â = 1√
2

[
d

dq
+

s − exp(−√
2xeq)√

2xe

−
√

xe

2

]
,

Â† = 1√
2

[
− d

dq
+

s − exp(−√
2xeq)√

2xe

−
√

xe

2

] (27)

and the associated coherent states

|α〉 = exp

[
− 1

2xe

exp(−
√

2xeq)

]
exp

[
− (s − xe)q√

2xe

]
exp(

√
2αq). (28)

They are eigenstates of the annihilation operator Â, which minimize the uncertainty relation
(8) for [Â, Â†] = exp(−√

2xeq).

7. The Wei Hua oscillator

Taking into account the parabolic expansion

f (x) = c1(x + c0/c1) + c2(x + c0/c1)
2 (29)

and the identical initial condition as previously x(0) = (1 − c0)/c1, from equation (18), one
obtains

x(q) = (cc1/c2) exp[−c1(q − q0)]

1 − c exp[−c1(q − q0)]
− c0

c1
, (30)

5
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in which c = C/(B/W + C), q0 = ln(B/W + C)/c1,W = (
2c0 + c2

1

)/
[2c1(1 − c2)], B =

c1
/(

c2
1 + c2

)
and C = c2

/(
c2

1 + c2
)
. Hence, the Schrödinger equation (3) and its ground-state

solution take the forms

1

2

{
− d2

dq2
+ 2D

{
1 − exp[−c1(q − q0)]

1 − c exp[−c1(q − q0)]

}2

− 2E0

}
|0〉 = 0, (31)

|0〉 = {1 − c exp[−c1(q − q0)]}
1
c2 {c exp[−c1(q − q0)]}

c0
c2
1 , (32)

in which

2D = (1 − c2)W
2, 2E0 = (1 − c2)W

2 − c2
0

/
c2

1 = 2D − c2
0

/
c2

1 (33)

represent the dissociation energy and ground eigenenergy of the system. Equation (31) is the
well-known eigenvalue equation for the ground state of the Wei Hua oscillator [30], whose
coherent states have not been derived as yet. Applying equations (4), (30) and (32) one gets
the annihilation and creation operators

Â = 1√
2

[
d

dq
− (cc1/c2) exp[−c1(q − q0)]

1 − c exp[−c1(q − q0)]
+

c0

c1

]
, (34)

Â† = 1√
2

[
− d

dq
− (cc1/c2) exp[−c1(q − q0)]

1 − c exp[−c1(q − q0)]
+

c0

c1

]
, (35)

as well as the coherent states of the Wei Hua oscillator

|α〉 = {1 − c exp[−c1(q − q0)]}
1
c2 {c exp[−c1(q − q0)]}

c0
c2
1 exp(

√
2αq). (36)

They are eigenstates of the annihilation operator Â|α〉 = α|α〉 and minimize the uncertainty
relation (8) for [Â, Â†] = (

cc2
1

/
c2

)
exp[−c1(q − q0)]/{1 − c exp[−c1(q − q0)]}2.

Employing the parameter relations

c0

c2
1

= ρ0,
1

c2
= ρ +

1

2
, c1 = b, (37)

in which [30]

ρ0 = (t2 − λ0)
1/2, ρ =

[
1

4
+ t2(Q − 1)2

]1/2

, Q = 1

c
, (38)

t2 = 2D

b2
, 2E0 = b2λ0, h̄ = m = 1, (39)

the derived ground-state eigenfunction (32) can be written in the form originally obtained by
Wei Hua [30]

|0〉 = {1 − c exp[−b(q − q0)]}ρ+ 1
2 {c exp[−b(q − q0)]}ρ0 , (40)

whereas from equations (37)–(39) one gets

2E0 = b2λ0 = b2(t2 − ρ2
0

) = 2D − b2ρ2
0 = (1 − c2)W

2 − c2
0

/
c2

1 (41)

in agreement with the ground-state eigenvalue formula (33). Employing the notation (38), the
annihilation and creation operators as well as the coherent states of the Wei Hua oscillator can
be specified in the form

6



J. Phys. A: Math. Theor. 42 (2009) 165301 M Molski

Â = 1√
2

[
d

dq
− bc

(
ρ + 1

2

)
exp[−b(q − q0)]

1 − c exp[−b(q − q0)]
+ bρ0

]
, (42)

Â† = 1√
2

[
− d

dq
− bc

(
ρ + 1

2

)
exp[−b(q − q0)]

1 − c exp[−b(q − q0)]
+ bρ0

]
, (43)

|α〉 = {1 − c exp[−b(q − q0)]}ρ+ 1
2 {c exp[−b(q − q0)]}ρ0 exp(

√
2αq). (44)

8. The Kratzer–Fues oscillator

The method proposed permits also a derivation of the coherent states of the vibrational systems
described by the Kratzer–Fues potential [31, 32]

V (r) = De

[
r − re

r

]2

= De

[
z

1 + z

]2

= De

[
y − 1

y

]2

. (45)

Here re denotes the equilibrium length of the molecule bond V (re) = 0,De = V (r → ∞)

is the potential depth approximately equal to the dissociation energy of the system, whereas
z = (r − re)/re and y = r/re are the Dunham and Kratzer–Fues variables, respectively.

In order to construct the coherent states of the Kratzer–Fues oscillator, we employ the
generating function

f (x) = [c1(x + c0/c1)]
2, (46)

which when introduced into equation (18) yields

x(q) = 1

c1(c1q + 1)
− c0

c1
, x(0) = (1 − c0)/c1. (47)

Hence, the Schrödinger equation (1) and its ground-state solution take the form

1

2

[
− d2

dq2
+ 2D

(
c1q − s

1 + c1q

)2

− 2E0

]
|0〉 = 0, (48)

|0〉 = (1 + c1q)
1
c2
1 exp

[
−

(
1 − c2

1

)
(c1q + 1)

c2
1(s + 1)

]
, (49)

in which 2D = c2
0

/[
c2

1

(
1 − c2

1

)]
, s = (

1 − c0 − c2
1

)/
c0, 2E0 = c2

0

/(
1 − c2

1

)
. It is easy to

verify that for s = 0 or c0 = 1 − c2
1 and c1q = z, equations (48) and (49) turn out to be the

Schrödinger equation for the Kratzer–Fues oscillator [31]

1

2

[
− d2

dq2
+ 2D

(
c1q

1 + c1q

)2

− 2E0

]
|0〉 = 0, (50)

|0〉 = (1 + c1q)
1
c2
1 exp

[−(
1 − c2

1

)(
c1q + 1

)/
c2

1

]
, (51)

in which 2D = (
1−c2

1

)/
c2

1, 2E0 = 1−c2
1. Hence, the Kratzer–Fues annihilation and creation

operators can be given in the form

Â = 1√
2

[
d

dq
− 1

c1(c1q + 1)
+

1 − c2
1

c1

]
,

Â† = 1√
2

[
− d

dq
− 1

c1(c1q + 1)
+

1 − c2
1

c1

]
,

(52)

7
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whereas the associated coherent states are

|α〉 = (1 + c1q)
1
c2
1 exp

[−(
1 − c2

1

)
(c1q + 1)

/
c2

1

]
exp(

√
2αq). (53)

Such states minimize the uncertainty relation (8) for [Â, Â†] = (c1q + 1)−2.
Taking into account the parameter relationships (h̄ = m = 1)

1

c2
1

= λ,
1 − c2

1

c4
1

= γ 2 = 2r2
e De β2

0 = 2r2
e (De − E0) γ 2/λ = β0 (54)

and the Kratzer–Fues variable y = c1q + 1, we can rewrite equations (50) and (52) to the form
recently derived by Molski [7]

Â = 1√
2

(
d

dy
+ β0 − λ

y

)
, Â† = 1√

2

(
− d

dy
+ β0 − λ

y

)
, (55)

Â|α〉 = α|α〉, |α〉 = yλ exp[−β0y] exp[
√

2αy]. (56)

9. The generalized Kratzer–Fues oscillator

The term D[(z − s)/(1 + z)]2, which appears in (48), is worth considering as it represents
a generalized version of the Kratzer–Fues formula V (r) = De[1 − re(s + 1)/r]2. From
the relation −1 � 1 − re(s + 1)/r � 1, one may calculate the convergence radius
R ∈ [re(s + 1)/2,∞] for the new potential. It increases for s ∈ (−1, 0) in comparison
with the radius of the original Kratzer–Fues potential (s = 0) yielding R ∈ (re/2,∞). In
such circumstances, the expansion of the potential energy function

V (r) = n0

[
r − re(s + 1)

r

]2
{

1 +
N∑

k=1

nk

[
r − re(s + 1)

r

]k
}

(57)

into a series of the generalized Kratzer–Fues variable 1 − re(s + 1)/r will provide much
accurate reproduction of the real potential curves than that obtained by the Simons–Parr–
Finlan expansion (s = 0) [34], which diverges in the united-atom limit r → 0. The set
of parameters (re, s, n0, n1, . . .) can be evaluated from the molecular IR and MW spectra by
making use of the fitting procedure. It should also be pointed out that the new potential permits
the analytical solution of the Schrödinger equation and can be used to generate the coherent
states for the generalized Kratzer–Fues oscillator:

|α〉 = (1 + c1q)
1
c2
1 exp

[−(
1 − c2

1

)
(c1q + 1)

/
c2

1(s + 1)
]

exp(
√

2αq). (58)

10. Conclusions

The method proposed is general and permits the construction of the coherent states, associated
potentials and superpotentials as well as deriving the supersymmetric Schrödinger equation
amenable to direct solution in the SUSYQM scheme [35]. The results of the calculations are
presented in table 1. In the standard approach, the superpotentials are solutions of the Riccati
equation (2) obtained for the specific form of the potential function V (q) [35]. Here a new
procedure has been introduced, which permits simultaneous derivation of the potentials and
associated superpotentials assuming that dx(q)/dq = −f (x). This term can be expanded in
a power series of x(q) and then used to generate the coherent states for different orders of
the expansion (19). For the terms up to the second order, the method produces the minimum

8
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Table 1. Comparison of the results obtained in this work for harmonic, generalized Morse, Wei
Hua and generalized Kratzer–Fues oscillators; f (x) is generating function; x(q): superpotential;
V (q): potential. The parameters D, c and q0 in the Wei Hua potential are defined in section 7.

f (x) x(q) V (q)

1 −q q2

c1

(
x + c0

c1

)
exp(−c1q)

c1
− c0

c1

[c0+c2
1/2−exp(−c1q)]2

c2
1

c1

(
x + c0

c1

)
+ c2

(
x + c0

c1

)2
(cc1/c2) exp[−c1(q−q0)]

1−c exp[−c1(q−q0)] − c0
c1

D
{

1−exp[−c1(q−q0)]
1−c exp[−c1(q−q0)]

}2

[
c1

(
x + c0

c1

)]2
1

c1(c1q+1)
− c0

c1

(
c2

0
c2

1(1−c2
1)

) [
c1q−(1−c0−c2

1)/c0

1+c1q

]2

uncertainty coherent states for harmonic, Morse, Wei Hua, Kratzer–Fues and generalized
Morse and Kratzer–Fues potentials. They are the most important potential energy functions
employed in molecular quantum mechanics, coherent spectroscopy (femtochemistry) and
coherent nonlinear optics. In particular, they can be used in the investigation of the resonant
interactions of the laser beam with molecules producing the coherent effects such as self-
induced transparency, soliton formation, excitation of a coherent superposition of states and
periodic alternations of the refractive index [4–8].
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